首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   813篇
  免费   149篇
  2021年   9篇
  2020年   8篇
  2016年   17篇
  2015年   36篇
  2014年   28篇
  2013年   31篇
  2012年   44篇
  2011年   35篇
  2010年   19篇
  2009年   34篇
  2008年   26篇
  2007年   25篇
  2006年   18篇
  2005年   32篇
  2004年   24篇
  2003年   22篇
  2002年   23篇
  2001年   34篇
  2000年   29篇
  1999年   24篇
  1998年   14篇
  1997年   7篇
  1996年   11篇
  1995年   8篇
  1994年   10篇
  1992年   20篇
  1991年   21篇
  1990年   22篇
  1989年   21篇
  1988年   17篇
  1987年   18篇
  1986年   13篇
  1985年   17篇
  1984年   9篇
  1983年   10篇
  1982年   7篇
  1981年   13篇
  1980年   12篇
  1979年   11篇
  1978年   15篇
  1977年   17篇
  1976年   15篇
  1975年   14篇
  1974年   16篇
  1973年   15篇
  1972年   11篇
  1971年   8篇
  1969年   8篇
  1968年   8篇
  1967年   9篇
排序方式: 共有962条查询结果,搜索用时 15 毫秒
101.
102.

Background  

a decline in immune and endocrine function occurs with aging. The main purpose of this study was to investigate the impact of long-term endurance training on the immune and endocrine system of elderly men. The possible interaction between these systems was also analysed.  相似文献   
103.
In Tangier disease, absence of ATP binding cassette transporter A1 (ABCA1) results in reduced plasma HDL and elevated triglyceride (TG) levels. We hypothesized that hepatocyte ABCA1 regulates VLDL TG secretion through nascent HDL production. Silencing of ABCA1 expression in oleate-stimulated rat hepatoma cells resulted in: 1) decreased large nascent HDL (>10 nm diameter) and increased small nascent HDL (<10 nm) formation, 2) increased large buoyant VLDL1 particle secretion, and 3) decreased phosphatidylinositol-3 (PI3) kinase activation. Nascent HDL-containing conditioned medium from rat hepatoma cells or HEK293 cells transfected with ABCA1 was effective in increasing PI3 kinase activation and reducing VLDL TG secretion in ABCA1-silenced hepatoma cells. Addition of isolated large nascent HDL particles to ABCA1-silenced hepatoma cells inhibited VLDL TG secretion to a greater extent than small nascent HDL. Similarly, addition of recombinant HDL, but not human plasma HDL, was effective in attenuating TG secretion and increasing PI3 kinase activation in ABCA1-silenced cells. Collectively, these data suggest that large nascent HDL particles, assembled by hepatic ABCA1, generate a PI3 kinase-mediated autocrine signal that attenuates VLDL maturation and TG secretion. This pathway may explain the elevated plasma TG concentration that occurs in most Tangier subjects and may also account, in part, for the inverse relationship between plasma HDL and TG concentrations in individuals with compromised ABCA1 function.  相似文献   
104.
Isotopic measurement of biosynthetic rates of lipids in VLDL particles has long posed difficult technical problems. In this review, key methodologic issues and recent technical advances are discussed. A common problem for all biosynthetic measurements is the requirement to measure isotopic labeling of the true intracellular biosynthetic precursor pool. Two techniques that address this problem for lipid biosynthesis, and that are applicable to humans, have been developed-the combinatorial probability method (or mass isotopomer distribution analysis) and (2)H(2)O incorporation. The theoretical basis and practical application of these methods, both of which involve mass spectrometry, are described. Issues relevant to specific lipid components of VLDL, such as differences in the labeling of the various particle lipids (phospholipid, cholesterol, etc.), and the contribution of an intrahepatic cytosolic triacylglycerol (TG) storage pool to VLDL-TG are discussed. In summary, advances in stable isotope-mass spectrometric techniques now permit accurate measurement of liver-TG synthesis and flux. In vivo regulation of the synthesis, assembly, and secretion of VLDL-TG in humans is thereby accessible to direct investigation. Patient-oriented research in conditions such as dyslipidemia and hepatic steatosis is made feasible by these scientific advances.  相似文献   
105.
Most studies of protein oxidation have typically focused on the reactivity of single amino acid side chains while ignoring the potential importance of adjacent sequences in directing the reaction pathway. We previously showed that hypochlorous acid (HOCl), a specific product of myeloperoxidase, inactivates matrilysin by modifying adjacent tryptophan and glycine (WG) residues in the catalytic domain. Here, we use model peptides that mimic the region of matrilysin involved in this reaction, VVWGTA, VVWATA, and the library VVWXTA, to determine whether specific sequence motifs are targeted for chlorination or oxygenation by myeloperoxidase. Our results demonstrate that HOCl generated by myeloperoxidase or activated neutrophils converts the peptide VVWGTA to a chlorinated product, WG+32(Cl). Tandem mass spectrometry in concert with high resolution 1H and two-dimensional NMR analysis revealed that the modification required cross-linking of the tryptophan to the amide of glycine followed by chlorination of the indole ring of tryptophan. In contrast, when glycine in the peptide was replaced with alanine, the major products were mono- and dioxygenated tryptophan residues. When the peptide library VVWXTA (where X represents all 20 common amino acids) was exposed to HOCl, only WG produced a high yield of the chloroindolenine derivative. However, when glycine was replaced by other amino acids, oxygenated tryptophan derivatives were the major products. Our observations indicate that WG may represent a specific sequence motif in proteins that is targeted for chlorination by myeloperoxidase.  相似文献   
106.
Tax, an oncogenic viral protein encoded by human T cell leukemia virus type 1 (HTLV-1), induces cellular transformation of T lymphocytes by modulating a variety of cellular gene expressions [1]. Identifying cellular partners that interact with Tax constitutes the first step toward elucidating the molecular basis of Tax-induced transformation. Here, we report a novel Tax-interacting protein, hTid-1. hTid-1, a human homolog of the Drosophila tumor suppressor protein Tid56, was initially characterized based on its interaction with the HPV-16 E7 oncoprotein [2]. hTid-1 and Tid56 are members of the DnaJ family [2,3], which contains a highly conserved signature J domain that regulates the activities of heat shock protein 70 (Hsp70) by serving as cochaperone [4-6]. In this context, the molecular chaperone complex is involved in cellular signaling pathways linked to apoptosis, protein folding, and membrane translocation and in modulation of the activities of tumor suppressor proteins, including retinoblastoma, p53, and WT1[7-12]. We find that expression of hTid-1 inhibits the transformation phenotype of two human lung adenocarcinoma cell lines. We show that Tax interacts with hTid-1 via a central cysteine-rich domain of hTid-1 while a signature J domain of hTid-1 mediates its binding to Hsp70 in HEK cells. Importantly, Tax associates with the molecular chaperone complex containing both hTid-1 and Hsp70 and alters the cellular localization of hTid-1 and Hsp70. In the absence of Tax, expression of the hTid-1/Hsp70 molecular complex is targeted to perinuclear mitochondrial clusters. In the presence of Tax, hTid-1 and its associated Hsp70 are sequestered within a cytoplasmic "hot spot" structure, a subcellular distribution that is characteristic of Tax in HEK cells.  相似文献   
107.
Determining the taxonomic lineage of DNA sequences is an important step in metagenomic analysis. Short DNA fragments from next-generation sequencing projects and microbes that lack close relatives in reference sequenced genome databases pose significant problems to taxonomic attribution methods. Our new classification algorithm, RITA (Rapid Identification of Taxonomic Assignments), uses the agreement between composition and homology to accurately classify sequences as short as 50 nt in length by assigning them to different classification groups with varying degrees of confidence. RITA is much faster than the hybrid PhymmBL approach when comparable homology search algorithms are used, and achieves slightly better accuracy than PhymmBL on an artificial metagenome. RITA can also incorporate prior knowledge about taxonomic distributions to increase the accuracy of assignments in data sets with varying degrees of taxonomic novelty, and classified sequences with higher precision than the current best rank-flexible classifier. The accuracy on short reads can be increased by exploiting paired-end information, if available, which we demonstrate on a recently published bovine rumen data set. Finally, we develop a variant of RITA that incorporates accelerated homology search techniques, and generate predictions on a set of human gut metagenomes that were previously assigned to different 'enterotypes'. RITA is freely available in Web server and standalone versions.  相似文献   
108.
For more than half a century, researchers have studied the basic biology of Adenovirus (Ad), unraveling the subtle, yet profound, interactions between the virus and the host. These studies have uncovered previously unknown proteins and pathways crucial for normal cell function that the virus manipulates to achieve optimal virus replication and gene expression. In the infecting virion, the viral DNA is tightly condensed in a virally encoded protamine-like protein which must be remodeled within the first few hours of infection to allow for efficient expression of virus-encoded genes and subsequent viral DNA replication. This review discusses our current knowledge of Ad DNA-protein complex within the infected cell nucleus, the cellular proteins the virus utilizes to achieve chromatinization, and how this event contributes to efficient gene expression and progression of the virus life cycle.  相似文献   
109.
Generated by proteolytic cleavage of immunoglobulin, Fab fragments possess great promise as blocking reagents, able to bind receptors or other targets without inducing cross-linking. However, aggregation of Fab preparations is a common occurrence, which generates intrinsic stimulatory capacity and thwarts signal blockade strategies. Using a panel of biochemical approaches, including size exclusion chromatography, SDS-PAGE, mass spectrometry, and cell stimulation followed by flow cytometry, we have measured the oligomerization and acquisition of stimulatory capacity that occurs in four monoclonal IgG Fabs specific for TCR/CD3. Unexpectedly, we observed that all Fabs spontaneously formed complexes that were precisely bivalent, and these bivalent complexes possessed most of the stimulatory activity of each Fab preparation. Fabs composing bivalent complexes were more susceptible to proteolysis than monovalent Fabs, indicating a difference in conformation between the Fabs involved in these two different states of valency. Because osmolytes represent a class of compounds that stabilize protein folding and conformation, we sought to determine the extent to which the amino acid osmolyte l-proline might impact bivalent Fab complexation. We found that l-proline (i) inhibited the adoption of the conformation associated with bivalent complexation, (ii) preserved Fab monovalency, (iii) reversed the conformation of preformed bivalent Fabs to that of monovalent Fabs, and (iv) separated a significant percentage of preformed bivalent complexes into monovalent species. Thus, Fab fragments can adopt a conformation that is compatible with folding or packing of a bivalent complex in a process that can be inhibited by osmolytes.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号